skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perkins, Haille_M L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present a comprehensive, configurable open-source software framework for estimating the rate of electromagnetic detection of kilonovae (KNe) associated with gravitational wave detections of binary neutron star (BNS) mergers. We simulate the current LIGO-Virgo-KAGRA (LVK) observing run (O4) using current sensitivity and uptime values as well as using predicted sensitivites for the next observing run (O5). We find the number of discoverable kilonovae during LVK O4 to be $${ 1}_{- 1}^{+ 4}$$ or $${ 2 }_{- 2 }^{+ 3 }$$, (at 90 per cent confidence) depending on the distribution of NS masses in coalescing binaries, with the number increasing by an order of magnitude during O5 to $${ 19 }_{- 11 }^{+ 24 }$$. Regardless of mass model, we predict at most five detectable KNe (at 95 per cent confidence) in O4. We also produce optical and near-infrared light curves that correspond to the physical properties of each merging system. We have collated important information for allocating observing resources for search and follow-up observations, including distributions of peak magnitudes in several broad-bands and time-scales for which specific facilities can detect each KN. The framework is easily adaptable, and new simulations can quickly be produced in response to updated information such as refined merger rates and NS mass distributions. Finally, we compare our suite of simulations to the thus-far completed portion of O4 (as of 2023, October 14), finding a median number of discoverable KNe of 0 and a 95 percentile upper limit of 2, consistent with no detections so far in O4. 
    more » « less
  2. Abstract Binary neutron star mergers produce high-energy emissions from several physically different sources, including a gamma-ray burst (GRB) and its afterglow, a kilonova (KN), and, at late times, a remnant many parsecs in size. Ionizing radiation from these sources can be dangerous for life on Earth-like planets when located too close. Work to date has explored the substantial danger posed by the GRB to on-axis observers; here we focus instead on the potential threats posed to nearby off-axis observers. Our analysis is based largely on observations of the GW170817/GRB 170817A multi-messenger event, as well as theoretical predictions. For baseline KN parameters, we find that the X-ray emission from the afterglow may be lethal out to ∼1 pc and the off-axis gamma-ray emission may threaten a range out to ∼4 pc, whereas the greatest threat comes years after the explosion, from the cosmic rays accelerated by the KN blast, which can be lethal out to distances up to ∼11 pc. The distances quoted here are typical, but the values have significant uncertainties and depend on the viewing angle, ejected mass, and explosion energy in ways we quantify. Assessing the overall threat to Earth-like planets, KNe have a similar kill distance to supernovae, but are far less common. However, our results rely on the scant available KN data, and multi-messenger observations will clarify the danger posed by such events. 
    more » « less